Lecture 5. Mixing it all...

Complements on longitudinal data, Diff-in-Diff and Lag Dependent Variable

Olivier Godechot

Sciences Po

M2. Sociology Master

Two areas of research

• 1. Dif-in-dif with panels

• 2. Panels and reverse causality

1. Dif and Diff- Reminders

- (Simplified) Design
 - Two periods:
 - pre-treatment
 - (post-)treatment
 - Two groups:
 - treated
 - control

- With a panel
 - We measure outcomes for the same individuals, before and after
 - We estimate evolution in outcomes

 - β_1 is the diff-in-diff estimator
- Without panel
 - Individuals before and after are not the same
 - $y_{it} = \beta_0 + \beta_1 * GT + \beta_2 * t + \beta_3 * t * TG + \varepsilon_{it}$
 - β_3 is the diff-in-diff estimator

More than 2 periods?

- Several periods before treatment
 - Enable to test for parallel evolution of treated and control groups before treatment
 - => Do treated and control already diverge before treatement?
 - If answer NO: Better causal proof
- Several periods after treatment
 - Enable to measure the duration of treatment effects

How to do it?

- If all treated units are treated on the same date
- Example periods between t=-2 to t=1 (treatment starts in t=0) $y_{it} = \beta_0 + \beta_1 * TG \qquad \qquad \# TG Dummy$ $+ \beta_{-2p} * t_{-2} + \beta_{0p} * t_0 + \beta_{1p} * t_1 + \qquad \qquad \# Period Fixed effects$ $+ \beta_{-2tg} * t_{-2} * TG \qquad \qquad \# Before treatment difference$ $+ \beta_{0tg} * t_0 * TG + \beta_{1tg} * t_1 * TG + (i +) \varepsilon_{it} \qquad \# After treatment difference$
- (i +) : If it's an individual panel, you can add individual fixed effects
 - Consequence: No treated group dummies
- (t-1) serves as reference period

Figures matter

Treated firms

- What happen when the event does not happen at the same period?
- TWFE estimates :
 - Period fixed effects
 - Group (or individual) fixed effects
- Average causal treatment effect: correctly estimated if the treatment effect is **homogeneous** (The same at each period cf. Chaisemartin & D'Haultfoeuille, 2022)

Staggered design and forbidden comparisons

- If heterogeneity in treatment,
- The TWFE estimates can flip sign

Figure 1. A numerical example with three periods, an early and a late treated group

-- Y early -- Y late --

Intensity variation and forbidden comparison

• If heterogeneity in TWFE and DID with Heterogeneous Treatment Effects Figure 2. A numerical example with two periods, a more- and a less-treated group treatment, • The TWFE estimates can flip -----sign → t 2

-- Y more -- Y less --

11

Solution to staggered events

- Stacked regression
 - Cengiz, Dube, Lindner, Zipperer (2019)
- Borusyak et al. (2021)
 - R package: did_imputation
- de Chaisemartin and D'Haultfoeuille (2021a)
 - R package: did_multiplegt
- Other solutions:
 - Sun & Abraham (2021), Callaway & Sant'Anna (2021)

Example

- Ajdacic (*SER*, 2022).
 - Impact of recruitment from alternative finance executives on CEO pays in banks

	M1: FE	Year	M2: T	WFE	M3: S&	A DID	M4: Calla	way DID
Predictors	Est.	SE	Est.	SE	Est.	SE	Est.	SE
-6	_	_	-	_	-0.19	0.210	0.16	0.080
-5	-	-	-	-	0.17	0.170	0.09	0.070
-4	-	-	-	-	0.08	0.130	-0.19	0.160
-3	-	-	-	-	0.08	0.080	-0.14	0.140
-2	-	-	-	-	0.21 [†]	0.120	0.06	0.090
-1	-	-	-	-	-	-	-0.22	0.160
)	-	-	-	-	0.28^{+}	0.150	0.31	0.220
1	0.02	0.173	0.08	0.125	0.17	0.140	0.26	0.170
2	0.27	0.179	0.27 [†]	0.139	0.46^{*}	0.200	0.79^{*}	0.250
3	0.34†	0.179	0.17	0.148	0.28	0.220	0.35	0.310
1	0.62^{**}	0.212	0.43*	0.174	0.53 [†]	0.310	0.84	0.550
5	0.50^{*}	0.222	0.31	0.193	0.26	0.300	1.27	0.640
5	0.57^{*}	0.262	0.39 [†]	0.223	-	-	-	-
7+	0.68^{***}	0.163	0.53**	0.198	-	-	-	-
CEO in year	-0.16	0.137	-0.22^{*}	0.086	-	-	-	-
Multiple	0.25***	0.056	-	-	-	-	-	-
arrivals								
nsurance	0.67***	0.126	-	-	-	-	-	-
nvestment	-0.24^{+}	0.131	-	-	-	-	-	-
companies								
Speciality	0.35**	0.114	-	-	-	-	-	-
finance								
og(AuM)	0.31***	0.009	-	-	-	-	-	-
N:	933	-	933	-	961	-	961	-
R ²	0.64	-	0.02	-	0.90	-	-	-

Table 2 Estimations of event effect on compensation levels for the UK

2. Panel and reverse causality

- Two-ways FE turn a "level" regression into an "evolution" regression.
 - Accounts for time invariant unobserved heterogeneity
 - Evolution explains evolution
 - Endogeneity still possible
 - Time variant unobserved heterogenity
 - Reverse causality:
 - evolution of dependent variable y could account for evolution of independent variable x

Lagged dependent variable & the Nickell bias

- Idea for taking into account reverse causality: lag dependent variable
- But bias

$$y_{it} = \beta_1 + \varrho y_{i,t-1} + X_{it} \beta_2 + a_i + u_{it} (1)$$

• We calculate first difference to wipe out a_i

$$\Delta y_{it} = \varrho \Delta y_{i,t-1} + \Delta X_{it} \beta_2 + \Delta u_{it}$$
(2)

- $\Delta y_{i,t-1}$ is not independent from Δu_{it} .
 - $\Delta u_{it} = (u_{it} u_{i,t-1})$
 - $\Delta y_{it-1} = \varrho \Delta y_{i,t-2} + \Delta X_{it-1} \beta_2 + (\boldsymbol{u}_{i,t-1} \boldsymbol{u}_{i,t-2})$
 - They both depend on *u*_{*i*,*t*-1}

Solution to the bias

- Solution 1: Ignore. If T large (>30), Nickell bias converges to 0
 - Cross country panel regression with more that 30 years
- Solution 2: Instrument
 - Estimate first difference regressions
 - Instrument lag dependent variable evolution $(\Delta y_{i,t-1})$ with lag dependent variable past levels $(y_{i,t-2})$

Anderson-Hsiao (1982) solution

- 2SLS instrumental variable
 - 1st stage: $\Delta y_{i,t-1} = y_{i,t-2} + \Delta X_{i,t} \beta'_2 + \Delta u_{i,t-1}$
 - 2^{nd} stage: $\Delta y_{it} = \varrho(\Delta y_{i,t-1})^* + \Delta X_{it} \beta_2 + \Delta u_{it}$
- Replacing the endogeneous variable with first stage estimates "solve" the bias $u_{i,t-1}$ is not in $y_{i,t-2}$
- Limits
 - Strong exogeneity hypothesis
 - $y_{i,t-2}$ impacts Δy_{it} only through its impact on $\Delta y_{i,t-1}$
 - We spoil one year ==> first year per individual can not be instrumented and is dropped
 - We don't use a lot of information to instrument

Arellano-Bond (1991) Solution

- Framework similar to Anderson Hsiao
 - $\varDelta y_{it} = \varrho(\varDelta y_{i,t-1})^* + \varDelta X_{it} \beta_2 + \varDelta u_{it}$
- Different estimation techniques :
 - Moment method
 - More lags used (up to all lags)
 - Possibility to also use $X_{i,t-k}$ to instrument $riangle X_{it}$
- Limits
 - "Too many instruments" problem
 - Unstable
- Further developments: Bond-Blundell (1998)

 Goldstein, Adam. "Revenge of the managers: Labor cost-cutting and the paradoxical resurgence of managerialism in the shareholder value era, 1984 to 2001." American Sociological Review 77.2 (2012): 268-294.

	(log) Number of Managerial Employees in Industry						
	(5)	(6)	(7)	(8)			
	1986 to 2001	1986 to 2001	1990 to 2001	1992 to 2001			
Constant	.552*	3.619***	3.304***	3.770***			
	(.2400)	(.3770)	(.4920)	(.5960)			
Controls							
Lagged Number of Managers	.671***	.471***	.425***	.409***			
	(.0194)	(.0249)	(.0293)	(.0392)			
Profit to Asset Ratio	.00439***	$.00316^{*}$.00428**	.00785***			
	(.0013)	(.0014)	(.0016)	(.0020)			
Lagged Profit to Asset Ratio	.00072	.00127	.000944	000438			
	(.0014)	(.0014)	(.0016)	(.0020)			
Managerial Education	00949	012	0182*	0353**			
_	(.0063)	(.0077)	(.0091)	(.0115)			
Proportion Female Managers	.225***	.197***	.185***	.0887			
	(.0359)	(.0367)	(.0436)	(.0525)			
Total Industry Employment (FTE)	161**	0402	.0826	.220*			
	(.0490)	(.0502)	(.0710)	(.0897)			
Industry Output (GDP)	.381***	.223***	.221***	.0738			
<i>y</i> 1 (<i>y</i>	(.0446)	(.0488)	(.0619)	(.0750)			
Industry Growth Rate (GDP)	.196***	.100	.0423	191*			
	(.0509)	(.0538)	(.0627)	(.0826)			
Lag Weighted Avg. Firm Size (empl.)			.000132*	.000254***			
118 (00181100 1118) 1 111 0110 (001F1)			(.0001)	(.0001)			
Theoretical Variables			(10001)	(10001)			
Lagged Mergers		.000118*	.0000965	.000123			
248694 11018010		(.00006)	(.00006)	(.00007)			
Lagged Log Computer Investment		.0400***	.0311***	.0901***			
248604 208 compater investment		(0082)	(0092)	(0152)			
Lagged % Emp in Corp. Firms		0922*	122*	150*			
hugged /o himp. in corp. I mus		(0414)	(0528)	(0678)			
Lagged Union Coverage Rate		- 00070***	- 009207***	- 00571**			
Lagged Onion Coverage Nate		(0011)	(0014)	(0019)			
% Holdings Institutional Investors		0817**	0001***	0615			
75 Holdings institutional investors		(0257)	(0300)	(0355)			
Lagged Layoff Appouncements		0.0257	000736	(.0355)			
Lagged Layon Announcements		(0012)	(0015)				
Lagged Job Displanary B-t		(.0012)	(.0015)	F04*			
Lagged Job Displacement Kate				.106.			
Observations	057	057	600	(.2520)			
Observations	857	857	668	502			

Table 2 Dynamic CMM Estimates of Managerial Employment Crowth

Note: Standard errors are in parentheses.

*p < .05; **p < .01; ***p < .001 (two-tailed tests).

References

- Ajdacic, Lena. "Status hierarchies and norm diffusion: the increase of top incomes in high finance." *Socio-Economic Review* (2022).
- Anderson, Theodore Wilbur, and Cheng Hsiao. "Formulation and estimation of dynamic models using panel data." *Journal of econometrics* 18.1 (1982): 47-82.
- Arellano, M., and S. Bond. 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations." Review of Economic Studies 58: 277–297
- De Chaisemartin, Clément, and Xavier D'Haultfoeuille. 2022. Two-way fixed effects and differences-indifferences with heterogeneous treatment effects: A survey. Journal of Econometrics
- Callaway, B. and P. H. Sant'Anna (2021). Difference-in-differences with multiple time periods. Journal of Econometrics 225, 200–230.
- Sun, L. and S. Abraham (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. Journal of Econometrics 225, 175–199.